A Return Prediction-based Investment with Particle Filtering and Anomaly Detection

نویسندگان

  • Masafumi Nakano
  • Akihiko Takahashi
  • Soichiro Takahashi
چکیده

This paper proposes a new stochastic volatility model with time-varying expected return, which enables us to predict returns based on exponential moving averages of the past returns frequently used in practice. Particularly, exploiting a particle filter in a self-organizing state space framework, we demonstrate that a simple return predictionbased strategy is superior to well-known strategies such as equally-weighted, minimumvariance and risk parity portfolios, which do not depend on return prediction. In addition, we develop three types of anomaly detectors that are easily implemented in the algorithm of the particle filter and apply them to investment decision. As a result, our model robustly outperforms the exponential moving average. Our dataset is monthly total returns of global assets such as stocks, bonds and REITs, and investment performances are evaluated with various statistics such as compound returns, Sharpe ratios, Sortino ratios or drawdowns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy logic-based portfolio selection with particle filtering and anomaly detection

This paper proposes a new knowledge-based system (KBS) featuring fuzzy logic (FL) with particle filtering and anomaly detection to create high-performance investment portfolios. In particular, our FL system selects a portfolio with fine risk-return profiles from a number of candidates by integrating multilateral performance measures. The candidates consist of various portfolios based on multipl...

متن کامل

Geological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering

This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Nonparametric Spectral-Spatial Anomaly Detection

Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...

متن کامل

Incorporating Return on Inventory Investment into Joint Lot-Sizing and Price Discriminating Decisions: A Fuzzy Chance Constraint Programming Model

Coordination of market decisions with other aspects of operations management such as production and inventory decisions has long been a meticulous research issue in supply chain management. Generally, changes to the original lot-sizing policy stimulated by market prices may impose remarkable deviation revenue throughout the supply and demand chain system. This paper examines how to set the chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016